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pyAB is a Python package for Bayesian & Frequentist A/B Testing.
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CHAPTER 1

Features:

Bayesian A/B Test:

• Conduct quick experiments to check for winning variant with additional prior information (Beta Distribution
parameters).

• Try different evaluation metrics (Uplift Ratio, Uplift Difference & Uplift Percent Gain) & vary number of mcmc
simulations.

• Visualize & inspect Uplift Density & Cumulative Density distributions.

Frequentist A/B Test:

• Conduct quick experiments to check for winning variant using two sample proportion test (Statistical signifi-
cance).

• Estimate required sample size per variant to reach provided Type-II error rate.

• Visualize & inspect power curve for varying alternative proportions.

1.1 Installation

Best way to install pyAB is through pip

pip install pyAB

To install from source, use the following Github link

git clone https://github.com/AdiVarma27/pyAB.git
cd pyAB
python setup.py install

1.1.1 Dependencies

pyAB has the following dependencies:
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• numpy

• matplotlib

• seaborn

• scipy

• statsmodels

1.2 Quick Start

1.2.1 Bayesian A/B Test

Let us assume we have two Banner Ads and want to run an AB Test to decide on the final version. We run the test
and collect 1000 samples per version. We observe 100 and 120 clicks for version-A & Version-B respectively (10 %
& 12.5 % Click-through-rates). From our previous experience, we know that the average Click-through-rate for our
previous Ads was around 12 %.

We first need to import ABTestBayesian class and provide prior clicks success_prior and prior impressions
trials_prior. Then, call the conduct_experiment method with successful clicks and impressions per ver-
sion.

For uplift_method, there are three metrics to choose from are 'uplift_ratio', 'uplift_percent' &
'uplift_difference'. We also choose mcmc num_simulations, which samples from Uplift Probability
Density function.

# import Bayesian class
from pyab.experiments import ABTestBayesian

# provide beta priors
ad_experiment_bayesian = ABTestBayesian(success_prior=120, trials_prior=1000)

# conduct experiment with two variants successes and trials, along with uplift method
→˓and number of simulations
ad_experiment_bayesian.conduct_experiment(success_null=100, trials_null=1000,

success_alt=125, trials_alt=1000,
uplift_method='uplift_ratio', num_

→˓simulations=1000)

Bayesian A/B test results can extremely useful to understand & communicate test results with other stakeholders
and answers the main business question: Which version works the best ?

Output:

pyAB Summary
============

Test Parameters
_______________

Variant A: Successful Trials 100, Sample Size 1000
Variant B: Successful Trials 125, Sample Size 1000
Prior: Successful Trials 120, Sample Size 1000

Test Results
____________

(continues on next page)
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(continued from previous page)

Evaluation Metric: uplift_ratio
Number of mcmc simulations: 1000

90.33 % simulations show Uplift Ratio above 1.

1.2.2 Frequentist A/B Test

Let us now run a Frequentist A/B Test and verify if there is a statistically significant difference between two pro-
portions, provided the sample sizes and Type-I Error rate. From above, we know the performance of version-A &
version-B (10 % & 12.5 % Click-through-rates), for 1000 impressions of each version.

We first need to import ABTestFrequentist class and provide type of alternative hypothesis alt_hypothesis,
'one_tailed' or 'two_tailed' & Type-I error rate alpha (default = 0.05). Then, we call the
conduct_experiment method with successful clicks and impressions per version.

This traditional methodology might be slightly tricky to communicate, and Type-I & Type-II error rates need to
be accounted for, unlike Bayesian methods.

# import Frequentist class
from pyab.experiments import ABTestFrequentist

# provide significance rate and type of test
ad_experiment_freq = ABTestFrequentist(alpha=0.05, alt_hypothesis='one_tailed')

# conduct experiment with two variants successes and trials, returns stat & pvalue
stat, pvalue = ad_experiment_freq.conduct_experiment(success_null=100, trials_
→˓null=1000,

success_alt=125, trials_alt=1000)

Output:

pyAB Summary
============

Test Parameters
_______________

(continues on next page)
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(continued from previous page)

Variant A: Success Rate 0.1, Sample Size 1000
Variant B: Success Rate 0.125, Sample Size 1000
Type-I Error: 0.05, one_tailed test

Test Results
____________

Test Stat: 1.769
p-value: 0.038
Type-II Error: 0.451
Power: 0.549

There is a statistically significant difference in proportions of two variants.

Given that the current Type-II error is 0.451 at 1000 samples per variant, we can find out required sample size per
variant to reach Type-II error of 0.1.

# required sample size per variant for given beta
ad_experiment.get_sample_size(beta=0.1)

Output:

2729

Never misinterpret your Results !
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1.3 pyAB API

(Version 0.0.1)

1.3.1 Experiments

class pyab.experiments.ABTestBayesian(success_prior, trials_prior)
Bayesian A/B Testing.

Parameters

• success_prior (int) – Number of successful samples from prior.

• trials_prior (int) – Number of trials from prior.

calculate_uplift_area()
Calculate Uplift pdf & area beyond threshold.

Returns

• uplift_distribution (ndarray) – uplift distribution based on chosen uplift method.

• uplift_area (float) – percentage area above threshold.

conduct_experiment(success_null, trials_null, success_alt, trials_alt, up-
lift_method=’uplift_percent’, num_simulations=1000)

Conduct experiment & generate uplift distributions.

Parameters

• success_null (int) – Number of successful samples for variant-a.

• trials_null (int) – Number of trials for variant-a.

• success_alt (int) – Number of successful samples for variant-b.

• trials_alt (int) – Number of trials for variant-b.

• num_simulations (int) – Number of mcmc simulations.

• uplift_method (str, default = 'uplift_percent') – Uplift evaluation
metric.

– ’uplift_percent’: percent uplift gain from variant-a to variant-b

– ’uplift_ratio’: uplift ratio of variant-b & variant-a

– ’uplift_difference’: uplift difference between variant-b & variant-a

plot_uplift_distributions(figsize=(18, 6))
Plot uplift pdf & cdf for provided experiment parameters.

Parameters figsize (tuple, default = (18, 6)) – matplotlib plot size.

print_bayesian_results()
Print Bayesian Experiment Results

class pyab.experiments.ABTestFrequentist(alpha=0.05, alt_hypothesis=’one_tailed’)
Frequentist A/B Testing aka Two sample proportion test.

Parameters

• alpha (float, default = 0.05) – Significane level or Type 1 error rate.
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• alt_hypothesis (str, default = 'one_tailed') – One or two tailed hy-
pothesis test.

– ’one_tailed’: one tailed hypothesis test

– ’two_tailed’: two tailed hypothesis test

calculate_power(stat)
Calculate power (1-beta) at given test statistics.

Parameters stat (float) – z or t test statistic.

Returns 1 - beta – power at given test statistic.

Return type float

calculate_stat(prop_alt)
Calculate test statistic with current experiment parameters.

Parameters prop_alt (float) – alternate hypothesis proportion.

Returns stat – z or t statistic.

Return type float

conduct_experiment(success_null, trials_null, success_alt, trials_alt)
Conduct experiment & generate power curve with provided parameters.

Parameters

• success_null (int) – number of successful clicks or successful events (Version-
A).

• trials_null (int) – number of impressions or events (Version-A).

• success_alt (int) – number of successful clicks or successful events (Version-
B).

• trials_alt (int) – number of impressions or events (Version-B).

Returns

• stat (float) – z or t statistic.

• pvalue (float) – probability of obtaining results atleast as extreme as the results actu-
ally observed during the test.

get_sample_size(beta=0.1)
Calculate required sample size per group to obtain provided beta.

Parameters beta (float) – Type 2 error rate.

Returns n – sample size per group.

Return type int

plot_power_curve(figsize=(9, 6))
Plot power curve for provided experiment parameters.

Parameters figsize (tuple, default = (9,6)) – matplotlib plot size.

print_freq_results()
Print Frequentist Experiment Results

1.3. pyAB API 9
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1.4 Contributing to pyAB

Welcome! pyAB is a community project and your contribution is important to the packages usability and success.

1.4.1 Code of Conduct

Contributors and participants of pyAB are expected to follow guidelines provided by Python Community Code of
Conduct.

1.4.2 General Guidelines

• For issues, please submit them to the issue tracker. If you can provide features, improvements or anything else
the world of AB Testing has to offer, your contributions are highly appreciated.

• Code in master branch should reflect the latest version. Create a pull request and add your merge request to the
dev-pyab branch.

• Please follow pep8 for coding conventions. For quick information about Git, visit https://rogerdudler.github.io/
git-guide/.

1.5 Release History

1.5.1 Version 0.0.1

• ABTestBayesian, ABTestFrequentist classes in experiments module.

• Base utility functions, test cases.
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Usage:
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CHAPTER 3

Bayesian A/B Test

Let us assume we have two Banner Ads and want to run an AB Test to decide on the final version. We run the test
and collect 1000 samples per version. We observe 100 and 120 clicks for version-A & Version-B respectively (10 %
& 12.5 % Click-through-rates). From our previous experience, we know that the average Click-through-rate for our
previous Ads was around 12 %.

We first need to import ABTestBayesian class and provide prior clicks success_prior and prior impressions
trials_prior. Then, call the conduct_experiment method with successful clicks and impressions per ver-
sion.

For uplift_method, there are three metrics to choose from are 'uplift_ratio', 'uplift_percent' &
'uplift_difference'. We also choose mcmc num_simulations, which samples from Uplift Probability
Density function.

# import Bayesian class
from pyab.experiments import ABTestBayesian

# provide beta priors
ad_experiment_bayesian = ABTestBayesian(success_prior=120, trials_prior=1000)

# conduct experiment with two variants successes and trials, along with uplift method
→˓and number of simulations
ad_experiment_bayesian.conduct_experiment(success_null=100, trials_null=1000,

success_alt=125, trials_alt=1000,
uplift_method='uplift_ratio', num_

→˓simulations=1000)

Bayesian A/B test results can extremely useful to understand & communicate test results with other stakeholders
and answers the main business question: Which version works the best ?

Output:

pyAB Summary
============

Test Parameters
(continues on next page)
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(continued from previous page)

_______________

Variant A: Successful Trials 100, Sample Size 1000
Variant B: Successful Trials 125, Sample Size 1000
Prior: Successful Trials 120, Sample Size 1000

Test Results
____________

Evaluation Metric: uplift_ratio
Number of mcmc simulations: 1000

90.33 % simulations show Uplift Ratio above 1.
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CHAPTER 4

Frequentist A/B Test

Let us now run a Frequentist A/B Test and verify if there is a significant difference between two proportions provided
the sample sizes and Type-I Error rate. From above, we know the performance of version-A & version-B (10 % &
12.5 % Click-through-rates), for 1000 impressions of each version.

We first need to import ABTestFrequentist class and provide type of alternative hypothesis alt_hypothesis,
'one_tailed' or 'two_tailed' & Type-I error rate alpha (default = 0.05). Then, we call the
conduct_experiment method with successful clicks and impressions per version.

This traditional methodology might be slightly tricky to communicate, and Type-I & Type-II error rates need to
be accounted for, unlike Bayesian methods.

# import Frequentist class
from pyab.experiments import ABTestFrequentist

# provide significance rate and type of test
ad_experiment_freq = ABTestFrequentist(alpha=0.05, alt_hypothesis='one_tailed')

# conduct experiment with two variants successes and trials, returns stat & pvalue
stat, pvalue = ad_experiment_freq.conduct_experiment(success_null=100, trials_
→˓null=1000,

success_alt=125, trials_alt=1000)

Output:

pyAB Summary
============

Test Parameters
_______________

Variant A: Success Rate 0.1, Sample Size 1000
Variant B: Success Rate 0.125, Sample Size 1000
Type-I Error: 0.05, one_tailed test

(continues on next page)
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(continued from previous page)

Test Results
____________

Test Stat: 1.769
p-value: 0.038
Type-II Error: 0.451
Power: 0.549

There is a statistically significant difference in proportions of two variants.

Given that the current Type-II error is 0.451 at 1000 samples per variant, we can find out required sample size per
variant to reach Type-II error of 0.1.

# required sample size per variant for given beta
ad_experiment.get_sample_size(beta=0.1)

Output:

2729

Never misinterpret your Results !
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