

pyAB

pyAB is a Python package for Bayesian & Frequentist A/B Testing.

Features:

Bayesian A/B Test:

	Conduct quick experiments to check for winning variant with additional prior information (Beta Distribution parameters).

	Try different evaluation metrics (Uplift Ratio, Uplift Difference & Uplift Percent Gain) & vary number of mcmc simulations.

	Visualize & inspect Uplift Density & Cumulative Density distributions.

Frequentist A/B Test:

	Conduct quick experiments to check for winning variant using two sample proportion test (Statistical significance).

	Estimate required sample size per variant to reach provided Type-II error rate.

	Visualize & inspect power curve for varying alternative proportions.

Content

	Installation
	Dependencies

	Quick Start
	Bayesian A/B Test

	Frequentist A/B Test

	pyAB API
	Experiments

	Contributing to pyAB
	Code of Conduct

	General Guidelines

	Release History
	Version 0.0.1

Usage:

Bayesian A/B Test

Let us assume we have two Banner Ads and want to run an AB Test to decide on the final version. We run the test and collect 1000 samples per version. We observe 100 and 120 clicks for version-A & Version-B respectively (10 % & 12.5 % Click-through-rates). From our previous experience, we know that the average Click-through-rate for our previous Ads was around 12 %.

We first need to import ABTestBayesian class and provide prior clicks success_prior and prior impressions trials_prior. Then, call the conduct_experiment method with successful clicks and impressions per version.

For uplift_method, there are three metrics to choose from are 'uplift_ratio', 'uplift_percent' & 'uplift_difference'. We also choose mcmc num_simulations, which samples from Uplift Probability Density function.

import Bayesian class
from pyab.experiments import ABTestBayesian

provide beta priors
ad_experiment_bayesian = ABTestBayesian(success_prior=120, trials_prior=1000)

conduct experiment with two variants successes and trials, along with uplift method and number of simulations
ad_experiment_bayesian.conduct_experiment(success_null=100, trials_null=1000,
 success_alt=125, trials_alt=1000,
 uplift_method='uplift_ratio', num_simulations=1000)

Bayesian A/B test results can extremely useful to understand & communicate test results with other stakeholders and answers the main business question: Which version works the best ?

Output:

pyAB Summary
============

Test Parameters

Variant A: Successful Trials 100, Sample Size 1000
Variant B: Successful Trials 125, Sample Size 1000
Prior: Successful Trials 120, Sample Size 1000

Test Results

Evaluation Metric: uplift_ratio
Number of mcmc simulations: 1000

90.33 % simulations show Uplift Ratio above 1.

[image: _images/fig_2.png]

Frequentist A/B Test

Let us now run a Frequentist A/B Test and verify if there is a significant difference between two proportions provided the sample sizes and Type-I Error rate. From above, we know the performance of version-A & version-B (10 % & 12.5 % Click-through-rates), for 1000 impressions of each version.

We first need to import ABTestFrequentist class and provide type of alternative hypothesis alt_hypothesis, 'one_tailed' or 'two_tailed' & Type-I error rate alpha (default = 0.05). Then, we call the conduct_experiment method with successful clicks and impressions per version.

This traditional methodology might be slightly tricky to communicate, and Type-I & Type-II error rates need to be accounted for, unlike Bayesian methods.

import Frequentist class
from pyab.experiments import ABTestFrequentist

provide significance rate and type of test
ad_experiment_freq = ABTestFrequentist(alpha=0.05, alt_hypothesis='one_tailed')

conduct experiment with two variants successes and trials, returns stat & pvalue
stat, pvalue = ad_experiment_freq.conduct_experiment(success_null=100, trials_null=1000,
 success_alt=125, trials_alt=1000)

Output:

pyAB Summary
============

Test Parameters

Variant A: Success Rate 0.1, Sample Size 1000
Variant B: Success Rate 0.125, Sample Size 1000
Type-I Error: 0.05, one_tailed test

Test Results

Test Stat: 1.769
p-value: 0.038
Type-II Error: 0.451
Power: 0.549

There is a statistically significant difference in proportions of two variants.

[image: _images/fig_1.png]
Given that the current Type-II error is 0.451 at 1000 samples per variant, we can find out required sample size per variant to reach Type-II error of 0.1.

required sample size per variant for given beta
ad_experiment.get_sample_size(beta=0.1)

Output:

2729

Never misinterpret your Results !

[image: ImageLink] [https://imgs.xkcd.com/comics/significant.png]

Installation

Best way to install pyAB is through pip

pip install pyAB

To install from source, use the following Github link

git clone https://github.com/AdiVarma27/pyAB.git
cd pyAB
python setup.py install

Dependencies

pyAB has the following dependencies:

	numpy

	matplotlib

	seaborn

	scipy

	statsmodels

Quick Start

Bayesian A/B Test

Let us assume we have two Banner Ads and want to run an AB Test to decide on the final version. We run the test and collect 1000 samples per version. We observe 100 and 120 clicks for version-A & Version-B respectively (10 % & 12.5 % Click-through-rates). From our previous experience, we know that the average Click-through-rate for our previous Ads was around 12 %.

We first need to import ABTestBayesian class and provide prior clicks success_prior and prior impressions trials_prior. Then, call the conduct_experiment method with successful clicks and impressions per version.

For uplift_method, there are three metrics to choose from are 'uplift_ratio', 'uplift_percent' & 'uplift_difference'. We also choose mcmc num_simulations, which samples from Uplift Probability Density function.

import Bayesian class
from pyab.experiments import ABTestBayesian

provide beta priors
ad_experiment_bayesian = ABTestBayesian(success_prior=120, trials_prior=1000)

conduct experiment with two variants successes and trials, along with uplift method and number of simulations
ad_experiment_bayesian.conduct_experiment(success_null=100, trials_null=1000,
 success_alt=125, trials_alt=1000,
 uplift_method='uplift_ratio', num_simulations=1000)

Bayesian A/B test results can extremely useful to understand & communicate test results with other stakeholders and answers the main business question: Which version works the best ?

Output:

pyAB Summary
============

Test Parameters

Variant A: Successful Trials 100, Sample Size 1000
Variant B: Successful Trials 125, Sample Size 1000
Prior: Successful Trials 120, Sample Size 1000

Test Results

Evaluation Metric: uplift_ratio
Number of mcmc simulations: 1000

90.33 % simulations show Uplift Ratio above 1.

[image: _images/fig_2.png]

Frequentist A/B Test

Let us now run a Frequentist A/B Test and verify if there is a statistically significant difference between two proportions, provided the sample sizes and Type-I Error rate. From above, we know the performance of version-A & version-B (10 % & 12.5 % Click-through-rates), for 1000 impressions of each version.

We first need to import ABTestFrequentist class and provide type of alternative hypothesis alt_hypothesis, 'one_tailed' or 'two_tailed' & Type-I error rate alpha (default = 0.05). Then, we call the conduct_experiment method with successful clicks and impressions per version.

This traditional methodology might be slightly tricky to communicate, and Type-I & Type-II error rates need to be accounted for, unlike Bayesian methods.

import Frequentist class
from pyab.experiments import ABTestFrequentist

provide significance rate and type of test
ad_experiment_freq = ABTestFrequentist(alpha=0.05, alt_hypothesis='one_tailed')

conduct experiment with two variants successes and trials, returns stat & pvalue
stat, pvalue = ad_experiment_freq.conduct_experiment(success_null=100, trials_null=1000,
 success_alt=125, trials_alt=1000)

Output:

pyAB Summary
============

Test Parameters

Variant A: Success Rate 0.1, Sample Size 1000
Variant B: Success Rate 0.125, Sample Size 1000
Type-I Error: 0.05, one_tailed test

Test Results

Test Stat: 1.769
p-value: 0.038
Type-II Error: 0.451
Power: 0.549

There is a statistically significant difference in proportions of two variants.

[image: _images/fig_1.png]
Given that the current Type-II error is 0.451 at 1000 samples per variant, we can find out required sample size per variant to reach Type-II error of 0.1.

required sample size per variant for given beta
ad_experiment.get_sample_size(beta=0.1)

Output:

2729

Never misinterpret your Results !

[image: ImageLink] [https://imgs.xkcd.com/comics/significant.png]

pyAB API

(Version 0.0.1)

Experiments

	
class pyab.experiments.ABTestBayesian(success_prior, trials_prior)

	Bayesian A/B Testing.

	Parameters

	
	success_prior (int) – Number of successful samples from prior.

	trials_prior (int) – Number of trials from prior.

	
calculate_uplift_area()

	Calculate Uplift pdf & area beyond threshold.

	Returns

	
	uplift_distribution (ndarray) – uplift distribution based on chosen uplift method.

	uplift_area (float) – percentage area above threshold.

	
conduct_experiment(success_null, trials_null, success_alt, trials_alt, uplift_method='uplift_percent', num_simulations=1000)

	Conduct experiment & generate uplift distributions.

	Parameters

	
	success_null (int) – Number of successful samples for variant-a.

	trials_null (int) – Number of trials for variant-a.

	success_alt (int) – Number of successful samples for variant-b.

	trials_alt (int) – Number of trials for variant-b.

	num_simulations (int) – Number of mcmc simulations.

	uplift_method (str, default = 'uplift_percent') – Uplift evaluation metric.

	
	’uplift_percent’:

	percent uplift gain from variant-a to variant-b

	
	’uplift_ratio’:

	uplift ratio of variant-b & variant-a

	
	’uplift_difference’:

	uplift difference between variant-b & variant-a

	
plot_uplift_distributions(figsize=(18, 6))

	Plot uplift pdf & cdf for provided experiment parameters.

	Parameters

	figsize (tuple, default = (18, 6)) – matplotlib plot size.

	
print_bayesian_results()

	Print Bayesian Experiment Results

	
class pyab.experiments.ABTestFrequentist(alpha=0.05, alt_hypothesis='one_tailed')

	Frequentist A/B Testing aka Two sample proportion test.

	Parameters

	
	alpha (float, default = 0.05) – Significane level or Type 1 error rate.

	alt_hypothesis (str, default = 'one_tailed') – One or two tailed hypothesis test.

	
	’one_tailed’:

	one tailed hypothesis test

	
	’two_tailed’:

	two tailed hypothesis test

	
calculate_power(stat)

	Calculate power (1-beta) at given test statistics.

	Parameters

	stat (float) – z or t test statistic.

	Returns

	1 - beta – power at given test statistic.

	Return type

	float

	
calculate_stat(prop_alt)

	Calculate test statistic with current experiment parameters.

	Parameters

	prop_alt (float) – alternate hypothesis proportion.

	Returns

	stat – z or t statistic.

	Return type

	float

	
conduct_experiment(success_null, trials_null, success_alt, trials_alt)

	Conduct experiment & generate power curve with provided parameters.

	Parameters

	
	success_null (int) – number of successful clicks or successful events (Version-A).

	trials_null (int) – number of impressions or events (Version-A).

	success_alt (int) – number of successful clicks or successful events (Version-B).

	trials_alt (int) – number of impressions or events (Version-B).

	Returns

	
	stat (float) – z or t statistic.

	pvalue (float) – probability of obtaining results atleast as extreme as the results
actually observed during the test.

	
get_sample_size(beta=0.1)

	Calculate required sample size per group to obtain provided beta.

	Parameters

	beta (float) – Type 2 error rate.

	Returns

	n – sample size per group.

	Return type

	int

	
plot_power_curve(figsize=(9, 6))

	Plot power curve for provided experiment parameters.

	Parameters

	figsize (tuple, default = (9,6)) – matplotlib plot size.

	
print_freq_results()

	Print Frequentist Experiment Results

Contributing to pyAB

Welcome! pyAB is a community project and your contribution is important to the packages usability and success.

Code of Conduct

Contributors and participants of pyAB are expected to follow guidelines provided by Python Community Code of Conduct [https://www.python.org/psf/conduct/].

General Guidelines

	For issues, please submit them to the issue tracker [https://github.com/AdiVarma27/pyab/issues]. If you can provide features, improvements or anything else the world of AB Testing has to offer, your contributions are highly appreciated.

	Code in master branch should reflect the latest version. Create a pull request and add your merge request to the dev-pyab branch.

	Please follow pep8 [https://pep8.org/] for coding conventions. For quick information about Git, visit https://rogerdudler.github.io/git-guide/.

Release History

Version 0.0.1

	ABTestBayesian, ABTestFrequentist classes in experiments module.

	Base utility functions, test cases.

Index

 A
 | C
 | G
 | P

A

 	
 	ABTestBayesian (class in pyab.experiments)

 	
 	ABTestFrequentist (class in pyab.experiments)

C

 	
 	calculate_power() (pyab.experiments.ABTestFrequentist method)

 	calculate_stat() (pyab.experiments.ABTestFrequentist method)

 	
 	calculate_uplift_area() (pyab.experiments.ABTestBayesian method)

 	conduct_experiment() (pyab.experiments.ABTestBayesian method)

 	(pyab.experiments.ABTestFrequentist method)

G

 	
 	get_sample_size() (pyab.experiments.ABTestFrequentist method)

P

 	
 	plot_power_curve() (pyab.experiments.ABTestFrequentist method)

 	plot_uplift_distributions() (pyab.experiments.ABTestBayesian method)

 	
 	print_bayesian_results() (pyab.experiments.ABTestBayesian method)

 	print_freq_results() (pyab.experiments.ABTestFrequentist method)

 _static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/file.png

_static/minus.png

_images/fig_1.png
0

05

s

Power Curve

@ Fower at atemate proportion 054

an0 a1z a1
‘Comparisan Propartion

a6

e

_images/fig_2.png
Upit Cumulatve Distrbution Plot

10

s

—

s

02

_images/significant.png
JELY BEANS WE FOONDNO | [THAT semes THar.
CAUSE ACNE! LINK BETWEEN 0
THEAR ITS ONLY
SCENTISTS! JLLY BEANS AND A CERTAN CoLoR
wssnGATE' AGNE (P>005). THAT CAUSES IT.
BUT Weke | |
mwe SCIWSTS
Fm m.,...(m-
WE FOUNDNO WE FOUNDNO WE FOUNDNO WE FOUNDNO WE FOUNDNO
UINK BETWEEN. LINK BETWEEN. LINK BETWEEN. \UINK BETWEEN. UINK BEWEEN.
PRPLE JELY BROWN JeLY PNk JELY BLWE JEuy TEAL JELY
Saenaie || foveeice || Entuciue || snenoe | | e
p>m>s) P>oc€) p>ooq) (P>005), ?>Do§)
7

e roono | [weroovono | [ve raono | [we oo | [v rounono

LINK BETWEEN LINK BETWEEN LINK BETWEEN LINK BEWEEN LINK BETWEEN

SALMON JELY RED Jewr TURGUOISE JELLY | | MAGENTA JELLY YELLOW JELy

seavs moAE | | Beavs oo | | BEAwADANE | | BesmoROE | | B AoAE

(P>005). (P>005). (P>005). (P>005) (P>005).
7 /

el A EAEA K

weroonoNo | [we roonono | [we rnono | [we rono A WE FONDNO

UNKBEWEEN | UNKGEWEEN | | UNKGEVEEN [| LNKBEMEEN | | LNK BEMEEN

GReY T TN Ly OAN Jeuy GREEN Uy | | PAUVE JEwy.

BEMSADRE | | BEABADANE | | BEAYS MORGE | | BEANS MOACIE | | BEANS ADRGIE

(P>0.05). (P>005). (P>0.05). (P<0.05). (P>005).
{ 7 {

WEFOONDNO | | WE FOONDNO | [WEFOUNDNO | | WE FOUNDNO | | WE FounDNO.
LNKGEVEEN | [LNKGEMMEEN | | LNK BEEEN

UNKBEWEEN | | LNK BEEEN

BEIGE JELY ORANGE JELLY

BEANS ADACIE. BEANS ADACIE.

(P>005). (P>005).
/ 7

1

i

_static/plus.png

nav.xhtml

 Table of Contents

 		
 pyAB

 		
 Installation

 		
 Dependencies

 		
 Quick Start

 		
 Bayesian A/B Test

 		
 Frequentist A/B Test

 		
 pyAB API

 		
 Experiments

 		
 Contributing to pyAB

 		
 Code of Conduct

 		
 General Guidelines

 		
 Release History

 		
 Version 0.0.1

_static/up.png

_static/up-pressed.png

